Tertiary Phosphine Complexes of Nickel, Palladium, Platinum, Cobalt and Zinc: a Spectroscopic Study

J. E. FERGUSSON and P. F. HEVELDT

Department of Chemistry, University of Canterbury, Christchurch, New Zealand Received February 7, 1978

A range of four coordinate metal complexes: square planar MX_2L_2 where M=Ni, Pd and Pt, X=Cl, Pd and Pd

Introduction

A range of four-coordinate metal complexes:

- (a) MX_2L_2 square planar complexes, where M = Ni, Pd and Pt, X = Cl, Br and I and $L = Et_3P$ and Et_2PhP
- (b) $M_2X_4L_2$ binuclear planar complexes, where M = Pd and Pt, X and L as above
- (c) MX_2L_2 tetrahedral complexes, where M = Co and Zn, X and L as above,

have been prepared and studied principally in terms of their low frequency infrared and ¹H, ¹³C and ³¹P nuclear magnetic resonance spectra. A number of the complexes have been prepared before and isolated spectral measurements recorded. In this work it is intended to consider trends within related series of compounds particularly as they affect the metalligand bond.

Results and Discussion

Infrared Spectra

Mononuclear trans-MX₂P₂ complexes

The infrared spectra of the complexes are listed in Table I together with possible assignments. Where spectra have been reported before [1-4] our results

are in general agreement. Some particular aspects are discussed below.

 $\delta(MPC)$ vibration. A band of medium to strong intensity at 180 ± 20 cm⁻¹ (Et₃P complexes) and 170 ± 10 cm⁻¹ (Et₂PhP complexes) often assigned to a $\delta(PCC)$ bending mode [1–5] resembles a band in the spectra of dialkylsulphide complexes [6], which has been assigned with reasonable certainty to the $\delta(MSC)$ bending mode [6, 7]. We accordingly assign the band to $\delta(MPC)$ [8]. The band position shifts with the metal M, as well as metal isotope effects [1]. The latter, while not as great as observed for the $\nu(M-X)$ and $\nu(M-P)$ vibrations [1], is significant (0.7–1.8 cm⁻¹) indicating a contribution from the metal ion. An alternative explanation in terms of coupling of the $\nu(M-P)$ vibration with $\delta(CPC)$ has also been proposed [1].

The position of the bending mode $\delta(MPC)$ shifts to lower energy with increase in the size of the halogen. Two factors may be of importance here: (a) the steric effect of the larger halogens producing greater non-bonded interactions, and (b) electron withdrawal from the M-P-C system by the halogen in the order I > Br > Cl by virtue of either a $M \to X$ π bond or the increasing polarization of the halogen ligand (Cl < Br < I).

 $\nu(M-X)$ vibration. The metal-halogen stretch is readily assigned, except for the $\nu(\text{Ni-I})$ vibration. A medium to weak band at 255 cm⁻¹ in the spectrum of the complex $[\text{NiI}_2(\text{Me}_2\text{PhP})_2]$ has been assigned to the Ni-I stretching mode [9]. However, this band is more likely to be the $\nu(\text{Ni-P})$ stretching mode (see below). Therefore weak absorptions at 307 cm⁻¹ (Et₃P complex) and 302 cm⁻¹ (Et₂PhP complex) are assigned to the $\nu(\text{Ni-I})$ stretch.

While the parameter $\Delta[\nu(\text{Ni-X}) - \nu(\text{Pd-X})]$ is 47, 69 and 89 cm⁻¹ for X = Cl, Br and I respectively for the Et₃P complexes (similar differences are obtained for the Et₂PhP complexes), the value of $\Delta[\nu(\text{Pd-X}) - \nu(\text{Pt-X})]$ is constant, namely 16, 17 and 17 cm⁻¹ respectively. This suggests that the magnitude of trends in the Pd-X and Pt-X bond strengths are the

TABLE I. Far Infra-Red Spectra: Mononuclear trans-MX₂L₂ Complexes (cm⁻¹).

Band Assignment	NiCl ₂ - (PEt ₃) ₂	NiBr ₂ - (PEt ₃) ₂	NiI ₂ - (PEt ₃) ₂	PdCl ₂ - (PEt ₃) ₂	$PdBr_2$ - $(PEt_3)_2$	PdI_2 - $(PEt_3)_2$	PtCl ₂ - (PEt ₃) ₂	$PtBr_2$ - $(PEt_3)_2$
$\nu_{\mathbf{a}}(\mathbf{M}-\mathbf{X})$	403s	338m	307w	356s	269m	218wm	340vs	252ms
$v_{\mathbf{a}}(\mathbf{M}-\mathbf{P})$	270s	263m	253m	235m	228m	(a)	230w	223ms
$\delta(X-M-X)$	185m	151wm	142m	165m	138w	130m	166m	159m, sh
$\delta (P-M-P)$	164w	b	b	145w	b	ь	145wm	133w
δ(MPC)	199ms	191s	184s	183s	176s	172s	183m	181ms
- (COD)	375wm 365w	378wm	377w 359w	380w	376w 360w	380w 265w	383wm 363w	383wm
δ(CCP)	324wm 249m	327m 253sh	329w	330wm 268w	330w	330w 250w	270w	330m 283w
$\pi(MPC)$	109s, br	106ms, br	95s	110br, m	100m, br	90m, br	115m	102m, br
Lattice	47w	b	50w	56 w 47 w	55w 44w	55wm	82w 48m	85w 46w

^a Masked. ^b No absorption assignable.

same but for the Ni-X bonds a significant strengthening of the Ni-I bond relative to the others occurs.

 $\nu(M-P)$ vibration. The shift of spectral bands with metal isotope for phosphine complexes has clarified the assignment of the $\nu(M-P)$ stretching mode [1]. On the basis of this work some new $\nu(M-P)$ assignments are as given in Table I.

Where comparisons are possible the $\nu(M-P)$ stretching frequency for the Pt and Pd complexes are similar, suggesting the Pt-P bond is stronger than the Pd-P bond after allowing for mass effects.

A small, but consistent, decrease in the $\nu(M-P)$ stretching frequency occurs with change in the halogen and may reflect increasing competition for the metal π -bonding electrons in the order Cl < Br < I.

Mononuclear cis- MX_2P_2 complexes

The infrared absorptions of the *cis* complexes are listed in Table II, together with suggested assignments. The assignment of the $\nu(M-X)$ stretching mode is in agreement with previous work [3, 4, 10], but for the $\nu(M-P)$ stretching mode our assignments

TABLE II, Far Infra-Red Spectra: Mononuclear cis-MX₂L₂ Complexes (cm⁻¹).

Band Assignment	PtCl ₂ - (PEt ₃) ₂	PtBr ₂ - (PEt ₃) ₂	PtI ₂ - (PEt ₃) ₂	PtCl ₂ - (Et ₂ PhP) ₂	$PtBr_2$ - $(Et_2PhP)_2$	PtI_2 - $(Et_2PhP)_2$	PdCl ₂ - (Et ₂ PhP) ₂
$\nu_{\mathbf{a}}(\mathbf{M}-\mathbf{X})$	279s	188s	150ms	281s	 187m	157m, sh	292ms
$v_s(M-X)$	303s	201sh	172m, sh	313s	202m	168s	308s
$\nu_{\mathbf{a}}(\mathbf{M}-\mathbf{P})$	241m	b	b	222m	228w	235wm	222w
$\nu_{\mathbf{s}}(M-P)$	260m	285ms	b	269ms	b	270m	257ms
Bending Modes	{ 157w { 145w	143w 135w	135m	a	b	125w	145wm 122wm
δ(MPC)	170m 380wm 343w	a 383w 331w	160ms 388w 370wm	156m	b	a	160wm 377w
δ(CCP)	$\begin{cases} 230 sh \\ 209 w \end{cases}$		332wm 315w 230w	356w	335w	346w	352w
$\pi(MPC)$	114wm	115w, br	115ms, br	b	115m, br	113m, br 82wm	ь 80w
Lattice	55wm, br	51w	90wm 43w	67w	57wm 50wm	58wm	45w

^aMasked. ^bNo absorption band.

PtI ₂ - (PEt ₃) ₂	NiCl ₂ - (Et ₂ PhP) ₂	NiBr ₂ - (Et ₂ PhP) ₂	NiI ₂ - (Et ₂ PhP) ₂	PdCl ₂ - (Et ₂ PhP) ₂	PdBr ₂ - (Et ₂ PhP) ₂	PdI ₂ - (Et ₂ PhP) ₂	PtI ₂ - (Et ₂ PhP) ₂
201 w	398m	336m	302wm	353s	270m	212w	202w
220w	256s	261m	258m	248m	243m	240m	b
145w	а	153w	138w	147w	133wm	146w	146w
132w, br	a	140w	120w	b	111w	117m	b
175vs	176ms 240ms	170ms 236ms	166s 232m	166s 206ms	161ms 201s	163ms 198ms	156m b
386w	381w 345m	395m	394w 365w	392w		398wm	395m 377m
333w	317s	315s	319s	319ms	322m		
237m					317m	313m	316s
94m, br	120m	97m	95w	115wm	90m	91w	97w
48wm	66w	57w	85 wm	86 w 45 w	46 w	55wm	b

differ from reported values [3, 4]. The new assignments place the $\nu(M-P)$ stretching frequency higher in the *cis* complexes compared with the *trans* which is expected for the stronger M-P bond in the *cis* complexes [11, 12].

Dinuclear cis- $M_2X_4P_2$ complexes

Two structurally different halogens occur in these compounds, viz terminal and bridging. The infrared data and assignments are given in Table III. One bridging halogen is *trans* to a phosphorus atom and this vibration $\nu(M-X_b)_p$ is assigned to the lower energy absorption of the two $\nu(M-X)$ bands. The results agree in the main with similar reported assignments [4, 5].

Tetrahedral cobalt CoX_2P_2 complexes

Strong broad bands (half-band width 40 cm⁻¹) have been assigned to the two Co-X stretching modes (Table IV) and are in agreement with assignments

TABLE III. Far Infra-Red Spectra: Dinuclear cis-M2X4L2 Complexes (cm⁻¹).

Band Assignment	Pd ₂ Cl ₄ - (PEt ₃) ₂	Pd ₂ Br ₄ - (PEt ₃) ₂	Pd ₂ I ₄ - (PEt ₃) ₂	Pt ₂ Cl ₄ - (PEt ₃) ₂	Pt ₂ Br ₄ - (PEt ₃) ₂	Pt ₂ I ₄ - (PEt ₃) ₂
ν _a (M-X) terminal	356m	267m	236w	350ms 344m, sh	246m	207wm
$v_a(M-X)$ bridging trans to X	303wm	195ms	165m, sh	327m 320m, sh	210m	168m, sh
ν _a (M–X) bridging trans to P	260m	166m	140w	265s, br	a	146m
$\nu_{\mathbf{a}}(M-P)$	248m	251wm	252wm	255m, sh	a	247m
Bending Modes	154s 120vw			140m 123w	159wm 140w	125wm 110m
δ(MPC)	177m, sh	185s	171s	183m	185s	175s
δ(CCP)	{377w 329w	371w 323w 290w	372wm 333wm 212w	385w	387w, sh 363w 330m 267w	381m 366w 335m 267w
π(MPC)	93w, br	110m, br	106w, vbr	95w, br	105m, br	95w, br
Lattice	46 w	b	57w	45w	60w	50m

^aMasked. ^bNo absorption assignable.

TABLE IV. Far Infra-Red Spectra: Tetrahedral Cobalt CoX₂L₂ Complexes (cm⁻¹).

Band Assignment	CoCl ₂ (PEt ₃) ₂	CoBr ₂ (PEt ₃) ₂	$CoI_2(PEt_3)_2$	CoBr ₂ (Et ₂ PhP) ₂
$\nu_{\mathbf{a}}(M-X)$	333s	260s	212s	268s
$\nu_{\mathbf{s}}(\mathbf{M}-\mathbf{X})$	298s	241s	192m	241s
$\nu_{\mathbf{a}}(\mathbf{M}-\mathbf{P})$	245w	a	252w	215m
$\nu_{\mathbf{s}}(M-P)$	226 wm	225sh	225m	202w
Bending Modes	170w 156w	144w 123w 103w	152w 121w	167w 140w 90w
δ (MPC)	186w	180w	170w	175w
δ(CCP)	382w 362w 263w	370wm 318w	378w 301w	312w
	202w	202w		195wm
Lattice	102ms, br 57w	70m, br	58wm	77m 65w

a Masked.

given for related compounds [13-15]. The two Co-P stretching modes are assigned to medium to weak absorptions in the 202-245 cm⁻¹ range.

Nuclear Magnetic Resonance

Proton magnetic resonance

Three main regions of resonance (Tables V and VI) viz. methyl (-1.0 p.p.m.), methylene (-2.0 p.p.m.) and for the Et_2PhP complexes phenyl (-7.5 p.p.m.)

resonances occur in the proton NMR spectra. The spectra of the two phosphine ligands have been reported previously [16, 17].

Methyl and methylene resonances. The ¹H NMR spectrum of an isolated ethyl group consists of a 1:2:1 methyl triplet and a 1:2:2:1 methylene quartet. However, ³¹P-¹H coupling occurs in the *cis* platinum phosphine complexes giving a 1:2:2:2:1

TABLE V. ¹H NMR Spectra^a.

Compound	Methylene	Methyl	Phenyl	Ortho
Mononuclear Trans Squa	re Planar Complexes			
PEt ₃	-1.35	-1.07		
Et ₂ PhP	-1.60	-0.90	-7.26	-7.50
NiCl ₂ (PEt ₃) ₂	-1.67	-1.40		
$NiBr_2(PEt_3)_2$	-1.79	-1.36		
NiCl ₂ (Et ₂ PhP) ₂	-3.58	-1.37	7.55	
$NiBr_2(Et_2PhP)_2$	-6.36,	-1.60	-7.87	
	-6.86			
NiI ₂ (Et ₂ PhP) ₂	-6.10,	-1.80	-8.03	
	-6.66			
PdCl ₂ (PEt ₃) ₂	-1.80	1.12		
PdBr ₂ (PEt ₃) ₂	-1.97	-1.11		
$PdI_2(PEt_3)_2$	-2.18	-1.04		
PdCl ₂ (Et ₂ PhP) ₂	-2.14	-1.10	-7.35	-7.67
$PdBr_2(Et_2PhP)_2$	-2.39	-1.10	-7.37	-7.67
PdI ₂ (Et ₂ PhP) ₂	-2.60	-1.03	-7.40	-7.70
PtCl ₂ (PEt ₃) ₂	-1.93	-1.20		
PtBr ₂ (PEt ₃)2	-2.00	-1.17		
PtI ₂ (PEt ₃) ₂	-2.31	-1.10		
$PtI_2(Et_2PhP)_2$	-2.60	-1.08	-7.45	-7.60

TABLE V. (Continued)

Mononuclear Cis Square	Planar Complexes			
PtCl ₂ (PEt ₃) ₂	-2.10	-1.17		
PtBr ₂ (PEt ₃) ₂	-2.17	-1.16		
PtI ₂ (PEt ₃) ₂	-2.30	-1.16		
PtCl ₂ (Et ₂ PhP) ₂	-2.03	-0.90	-7.33	-7.33
PtBr ₂ (Et ₂ PhP) ₂	-2.16	-1.13	-7.40	-7.50
PtI ₂ (Et ₂ PhP) ₂	-2.16	-1.11	-7.65	-7.83
Binuclear Complexes				
Pd ₂ Cl ₄ (PEt ₃) ₂	-1.85	-1.28		
$Pd_2Br_4(PEt_3)_2$	-2.10	-1.28		
Pd ₂ I ₄ (PEt ₃) ₂	-2.30	-1.25		
Pt ₂ Cl ₄ (PEt ₃) ₂	-1.83	-1.20		
$Pt_2Br_4(PEt_3)_2$	-1.93	-1.20		
Pt ₂ I ₄ (PEt ₃) ₂	-2.10	-1.17		

^aChemical shifts in ppm downfield from TMS the centre of the resonance multiplet is the measured quantity.

TABLE VI. ¹H NMR Spectra ^a.

Compound	Methylene	Methyl	Methoxy	Phenyl		
				Meta	Ortho	
P(OEt) ₃ and (p-MeOC ₆ H ₄)F	Et ₂ P Complexes					
$(p-MeOPh)Et_2P (= L)$	-1.50	-0.97	-3.47	-6.70	-7.20	
PdCl ₂ L ₂	-2.10	-1.13	-3.87	-7.00	-7.70	
PdBr ₂ L ₂	-2.28	-1.08	-3.87	-6.97	-7.63	
Pdl_2L_2	-2.52	-1.03	-3.82	-6.90	-7.50	
P(OEt) ₃	-3.80	-1.20				
cis-PtCl ₂ (P(OEt) ₃) ₂	-4.06	-1.27				
cis-PtBr ₂ (P(OEt) ₃) ₂	-4.28	-1.37				
cis-PtI ₂ (P(OEt) ₃) ₂	-4.23	-1.33				
Zinc(II) Complexes						
$ZnCl_2(PEt_3)_2$	-1.80	-1.22				
$ZnBr_2(PEt_3)_2$	-1.83	-1.27				
$ZnI_2(PEt_3)_2$	-1.83	-1.22				
$ZnBr_2(Et_2PhP)_2$	-2.05	-1.08			-7.43	
$ZnI_2(Et_2PhP)_2$	-2.07	-1.08			-7.40	

^aChemical shifts in ppm downfield from TMS the centre of the resonance multiplet is the measured quantity.

methyl quintet, ${}^{2}J({}^{31}P^{-1}H) = 19$ Hz, and a 1:3:4:3:1 quintet for the methylene multiplet, ${}^{1}J({}^{31}P^{-1}H) = 7$ Hz. Virtual coupling [18] occurs between the phosphorus atoms in the Pt and Pd trans complexes. In this case the methyl resonance appears as a quintet 1:4:6:4:1, ${}^{2}J({}^{31}P^{-1}H) = 17$ Hz, while the methylene resonance appears as a sextet 1:4:7:7:4:1, ${}^{1}J({}^{31}P^{-1}H) = 7$ Hz. The spectra obtained of the cis and trans complexes are good approximations to these various multiplets. Additional slight splitting of the methylene resonances, in the Pt complexes, may be a consequence of ${}^{195}Pt^{-1}H$ coupling.

Methyl and methylene chemical shifts. The methylene protons resonance shift downfield on coordination. The shift of the $-CH_2-$ protons increases in the order Pd < Pt and trans > cis suggesting the P \rightarrow M σ -donation increases in the same order. The magnitude of the difference in the chemical shift between the cis and trans complexes (for the same halogen) reduces in the order Cl > Br > I suggesting that in the cis iodo-complex significant competition is occurring between the I and P for the metal bonding orbitals.

The downfield shift in the methylene protons lies in the order I > Br > Cl, a result found for numerous

complexes [19-25]. Possible $M \rightarrow X \pi$ -bond has been suggested as a reason [19], but polarization of the halogen could equally be a reason, though this is not observed for the zinc complexes (Table VI). Such explanations may be criticised for ignoring the magnetic effect of the halogen lone pairs, and the magnetic anisotropy of the M-L bonds [26]. This latter effect is said to increase in the order Cl < Br < I [27] which corresponds to the observed trends. The paramagnetic anisotropy of the spin paired transition metal ions also needs to be considered. It is reported that this anisotropy is related to the ligand field stabilization energy of the halogen ligands [28]. For the only series of complexes where it is possible to observe ligand field bands ([Pt₂X₄(Et₃P)₂]) a linear correlation [29] does exist between the wavelength of the ligand field absorption maximum and the chemical shift of the methylene protons.

Phenyl resonances. The shift of the phenyl resonances with change in halogen follows the usual direction, with the ortho- protons shifted furtherest downfield. For the p-methoxyphenyldiethylphosphine complexes the shift in the phenyl proton resonances on coordination is significantly greater than for the non-substituted phenyl phosphine. This may be a consequence of the +R effect of the methoxy substituent on the $P \rightarrow M$ σ -donation.

Binuclear complexes. The methyl protons of the Pd and Pt complexes, $M_2X_4P_2$, are deshielded more than for the corresponding mononuclear complexes. X-ray structural studies indicate [30] that the Cl-Pt-Cl angle in $[Pt_2Cl_4(PBr_3)_2]$ is 83.6° which allows the terminal bonded phosphines more space than in a mononuclear complex. This may lead to a reduction in intramolecular interactions allowing intermolecular electronic effects to become more dominant.

Nickel and zinc complexes. The ¹H NMR spectra of the nickel and zinc complexes (Tables V, VI) at ambient temperature are broad and unstructured. However, by cooling the solution down, or by adding a trace of phosphine, well resolved spectra are obtained, which suggests that the complexes undergo some dissociation in solution. Both the -CH₂- and -CH₃ protons of the Et₂PhP ligand in the nickel complexes are shifted well downfield compared with the chemical shift observed for the Pd, Pt and Zn complexes. This may be attributed to structural isomerization [31-33] in solution in which tetrahedral nickel complexes are formed. The tetrahedral structure contains paramagnetic Ni(II) which gives rise to paramagnetic contact shifts.

The notable feature for the zinc compounds is the invariance of the chemical shift of the $-CH_2-$ and $-CH_3$ protons with change in halogen. A significant $X \to M$ π -bond is not possible for Zn in a tetrahedral

environment which supports the π -bonding explanation given for the Pd and Pt compounds. However, less steric interactions will occur between the halogen and phosphines in a tetrahedral complex (compared with square planar complexes), which may invalidate any comparison. Structural evidence does indicate however, that both tetrahedral zinc [34, 35] and square planar platinum [36] compounds have distorted shapes.

¹³C nuclear magnetic resonance

The ¹³C NMR spectra are listed in Table VII. The spectra of the two phosphines Et₃P and Et₂PhP agree with those reported [37].

General features. Virtual coupling between the trans phosphorus atoms produces a 1:2:1 methylene triplet for the trans square planar complexes. The triplet character of the phenyl meta and ortho carbon resonances also probably arise from virtual coupling.

The ¹³C NMR spectra of both [PdCl₂(Et₂PhP)₂] and [PdCl₂(Et₂(p-MeOC₆H₄)P)₂] indicate a mixture of cis and trans isomers (approximately 1:3 ratio); for example the methylene region consists of a triplet arising from the trans isomer, and a doublet arising from the cis isomer (where virtual coupling is absent). The doublet is of true 1:1 intensity suggesting that the J_{pp} coupling in the *cis* complexes is very close to zero [38]. However, the methylene resonance for cis[PtCl₂(Et₂PhP)₂] is a filled-in doublet indicating a non-zero value of Jpp [38]. The different shape and multiplicity of the methylene resonance of the cis complexes is a function of J_{pp} and this reduces their value in investigations of stereochemistry [38]. For the bromo- and iodo- zinc complexes the methylene resonance is a triplet indicating that Jpp lies between the values for virtual coupling (\sim 500 Hz) in a trans complex and zero for a cis complex.

Spectral trends. The shift in the methylene carbon resonance with halogen is the same as found in the ¹H NMR, but the smaller shift in the methyl resonance is, in general, in the reverse direction of the shift observed in the ¹H NMR spectra. The ¹J(¹³C-³¹P) coupling constant for the 1:2:1 methylene resonance in the trans Pd complexes increases in the order Cl < Br < I. Presumably this reflects an increase in the P-C bond interaction. The methylene resonance is more deshielded in cis[PdCl₂(Et₂PhP)₂] than in the trans complex, as found in the ¹H NMR spectra.

³¹P nuclear magnetic resonance

The ³¹P NMR spectra obtained for some Pd and Pt complexes consist of one resonance for the Pd compounds, but a triplet for the Pt complexes owing to ³¹P-¹⁹⁵Pt coupling. The two outer resonances arise from molecules containing the ¹⁹⁵Pt nucleus. The J(P-Pt) coupling constants and chemical shift data

TABLE VII. ¹³C NMR Spectra^a.

Compound	Methyl	Methylene	C_1	Cortho	Cmeta	Cpara
PEt3	-9.7 d (14.0)	-19.1 d (13.8)				
Et2PhP	-10.0 d (15.0)	-20.4 d (12.0)	-139.2 d (18.0)	-132.5 d (18.0)	-128.4 d (6.0)	-128.5 s
trans-NiCl ₂ (PEt ₃) ₂	-8.26 s	-13.42 s				
trans-NiCl ₂ (Et ₂ PhP) ₂	-11.7 s	-19.5 s	-136.0 s	-135.0 s	-127.6 s	-131.2 s
trans-NiBr2(Et2PhP)2	-19.6 s	-32.5 s		-140.9 s	-125.5 s	-134.4 s
trans-PdCl ₂ (PEt ₃) ₂	-8.05 s	-13.84 t (26.9)				
trans-PdBr2(PEt3)2	-8.33 s	-15.64 t (27.6)				
trans-Pdl ₂ (PEt ₃) ₂	-8.89 s	-19.98 t (30.2)				
cis-PdCl ₂ (Et ₂ PhP) ₂	-8.28 s	-17.69 d (32.4)		ပ		
trans-PdCl ₂ (Et ₂ PhP) ₂	-7.55 s	-14.20 t (28.6)		ပ		
trans-PdBr2(Et2PhP)2	-8.22 s	-16.52 t (29.2)	-131.44 s ^b	-132.03 t (11.6)	-128.22 t (9.6)	-129.97 s
trans-PdI ₂ (Et ₂ PhP) ₂	-8.92 s	-21.84 t (30.8)	-133.76 s ^b	-132.04 t (10.4)	-127.94 t (9.8)	-129.76 s
trans-PtCl ₂ (PEt ₃) ₂	-8.0 s	-12.8 t (32.0)				
trans-PtI ₂ (PEt ₃) ₂	-8.5 s	-18.2 t (36.0)				
cis-PtCl ₂ (PEt ₃) ₂	-8.5 s	$-16.8(44.0)^{d}$				
cis-PtCl ₂ (Et ₂ PhP) ₂	-8.1 s	-16.8 (44.0) ^d		-131.6 t (10.0)	-128.5 t (10.0)	-131.0 s
cis-PtBr2(Et2PhP)2	-8.4 s			-131.4 t (8.0)	-128.2 s	-128.7 s
Pt ₂ Cl ₄ (PEt ₃) ₂	-7.5 s	-14.1 d (42.0)				
	-7.7 s	-15.6 d (40.0)				
Pt ₂ Br ₄ (PEt ₃) ₂	-7.9 s	-16.0 d (40.0)				
	-8.0 s	-17.0 d (40.0)				
Pt ₂ I ₄ (PEt ₃) ₂	-8.32 s	-18.24 d (40.0)				
ZnI ₂ (Et ₂ PhP) ₂	-7.72 s	-15.23 t (21.0)	-133.19 s	-131.73 s	-129.00 s	-130.56 s
ZnCl ₂ (PEt ₃) ₂	-7.91 s	-13.72 (h)				
ZnBr ₂ (PEt ₃) ₂	-7.93 s	-13.80 t (16.8)				
ZnI ₂ (PEt ₃) ₂	-7.96 s	-13.89 t (20.6)				
$PdCl_2((p\text{-MeOPh})Et_2P)_2$			Methoxy	Cortho	C_{meta}	
cis	s 9.8 -	-18.2 d (34.0)	-55.45 s			
trans	-7.9 s	-14.8 t (28.0)	-55.20 s	-133.7 t (12.0)*	-114.1 t (10.0)*	

^aChemical shifts in ppm downfield from TMS, coupling constants (HZ) in parentheses. ^bObserved on addition of Cr(acac)₃. ^cComplex multiplet. Not possible to assign *cis* and *trans* components. ^d "Filled-in" doublet (see text). ^ePoor resolution. ^fNot possible to decide the contributions of each isomer to the Cortho and Cmeta resonance multiplets. ^gs = singlet; d = doublet; t = triplet. ^hBroad and no structure resolved.

TABLE VIII. 31P NMR Spectra a.

Compound	Chemical Shift	¹ J(¹⁹⁵ Pt- ³¹ P)
trans-PdCl ₂ (PEt ₃) ₂	-17.6	
trans-PdBr2(PEt3)2	-15.2	
trans-PdI2(PEt3)2	-8.9	
trans-PdCl ₂ (Et ₂ PhP) ₂	-15.6	
trans-PdBr2(Et2PhP)2	-11.2	
trans-PdI2(Et2PhP)2	-4.7	
cis-PtCl ₂ (Et ₂ PhP) ₂	-3.1	3640
cis-PtBr2(Et2PhP)2	-2.4	3580
cis-PtCl ₂ (PEt ₃) ₂	-9.6	3520
trans-PtCl2(PEt3)2	-11.8	2400
trans-PtBr2(PEt3)2	-7.4	

^aChemical shifts in ppm relative to 85% H₃PO₄, coupling constants in Hz.

are listed in Table VIII, and are in agreement with results found for similar compounds [39].

A downfield shift of the P resonance occurs on coordination (free ligand P resonances are ± 20.1 (Et₃P) and ± 17.6 (Et₂PhP) [37]), and with change in halogen Cl, Br and I the shift is towards higher field, the reverse of the shifts observed for the ¹H and ¹³C NMR spectra. However, the explanation in terms of either a M \rightarrow X π -bond or polarization of the halogen ligand, may still apply. The π -bonding or polarization of the halogen in the order I \rightarrow Br \rightarrow Cl will lead to a greater electron drift towards the metal ion from the phosphines in the same order, and perhaps increasing the overall shielding around the P atom.

Ultra-Violet and Visible Spectra

The ultra-violet and visible spectra of a number of the complexes were recorded. They consisted of two intense bands, one centred around 260–400 nm assigned to a halogen → metal charge transfer, and one centred around 220–290 nm assigned to a phosphorus → metal charge transfer [40–42]. The nickel and cobalt compounds also displayed the usual ligand field spectra.

Preparations

The complexes prepared, together with their analyses are listed in Table IX. The methods used were those reported in the references given. Compounds not isolated previously were prepared by related methods. Only one crystalline triethylphosphite complex, cis-[Ptl₂((EtO)₃P)₂], was isolated. The analogous chloro and bromo complexes were only obtained as oils. Though these two materials were not analysed their NMR spectra were in accord with the expected structure.

Experimental

Preparations

The preparation of new compounds are described below.

Trans-dichlorobis(diethylphenylphosphine)nickel-(II)

Maroon needles were obtained from an ethanol solution (25 ml) of nickel chloride hydrate (0.3 g) and Et₂PhP (0.3 g). The compound was recrystallised from ethanol (77% yield).

Trans-diiodobis(diethylphenylphosphine)nickel(II) Nickel iodide was prepared by repeated treatments (at least three) of nickel carbonate with constant boiling HI and finally evaporating the solution to dryness [54]. To a solution of the iodide (0.3 g) in ethanol (25 ml) was added Et₂PhP (0.3 g) from which black microcrystals were obtained (70% yield).

Trans - diiodobis (diethylphenylphosphine) palladium(II)

 K_2PdI_4 (0.5 g) dissolved in water was treated with 0.5 g Et_2PhP and the mixture shaken for 10 minutes. The yellow product was extracted with chloroform, dried over anhydrous Na_2SO_4 and evaporated to dryness. The product was recrystallised from ethanol as red—orange prisms (66% yield).

Cis-dibromobis(diethylphenylphosphine)platinum-(II)

An aqueous solution of K_2PtBr_4 was shaken with Et_2PhP to give a cream-coloured product, a mixture of the *cis* and *trans* isomers. The crude complex (0.3 g) was suspended in warm petroleum ether (50–70 °C, 30 ml) containing a trace of Et_2PhP (0.005 g). After 10 minutes the solvent was removed under reduced pressure to give a residue. Recrystallisation from ethanol gave white prisms of the *cis* isomer (75% yield).

Trans-diiodobis(diethylphenylphosphine)platinum-(II)

Only the *trans* isomer is produced by shaking an aqueous solution of K_2PtI_4 (0.5 g) with Et_2PhP (0.5 g). The product was recrystallised from ethanol as yellow needles (80% yield).

Cis-diiodobis(diethylphenylphosphine)platinum(II)
The preparation was carried out according to the method reported for cis[PtI₂(Et₃P)₂] [49]. The complex Pt(Et₂PhP)₂SO₄ was isolated by treating crude (cis + trans) PtCl₂(Et₂PhP)₂ with Ag₂SO₄. An aqueous solution of the sulphato-complex was treated with KI to give a yellow precipitate which was recrystallised from ethanol (61% yield).

TABLE IX. Analytical Data.

Compound	Found		Calculated		M.P.	Reference
	С	Н	С	н	°C	
[CoCl ₂ (Et ₃ P) ₂]	39.2	8.1	39.3	8.2	98	43
$[CoBr_2(Et_2P)_2]$	31.5	6.5	31.6	6.6	132-134	44
$[CoI_2(Et_2P)_2]$	26.7	5.6	26.2	5.5	118	43
[CoBr ₂ (Et ₂ PhP) ₂]	43.9	5.7	43.6	5.4	80-82	44
t-[NiCl ₂ (Et ₃ P) ₂]	39.5	8.3	39,3	8.2	112	43
t-[NiBr ₂ (Et ₃ P) ₂]	31.8	6.5	31.6	6.6	103-104	43
t-[NiI ₂ (Et ₃ P) ₂]	26.4	5.8	26.2	5.5	88-89	43
t-[NiCl ₂ (Et ₂ PhP) ₂]	52.1	6.5	51.9	6.5	113	a
t-[NiBr ₃ (Et ₂ PhP) ₂]	43.7	5.5	43.6	5.4	114-115	45
t-[NiI ₂ (Et ₂ PhP) ₂]	37.2	4.7	37.2	4.7	87-88	а
t-[PdCl ₂ (Et ₃ P) ₂]	34.6	7.7	34.9	7.3	137-138	2
t-[PdBr ₂ (Et ₃ P) ₂]	29.2	6.0	28.7	6.0	134-135	2
t-[Pdl ₂ (Et ₃ P) ₂]	24.3	5.0	24.2	5.0	138-139	2
t-[PdCl ₂ (Et ₂ PhP) ₂]	47.4	5.9	47.2	5.9	141	46
t-[PdBr ₂ (Et ₂ PhP) ₂]	40.4	5.2	40.1	5.0	135	47
t-[PdI ₂ (Et ₂ PhP) ₂]	34.7	4.4	34.7	4.3	123-124	a
c-[PdCl ₂ (Et ₂ PhP) ₂]	47.0	5.9	47.2	5.9	141	46
$t-[PtCl_2(Et_2P)_2]$	29.4	5.9	28.7	6.0	139	2,48
c-[PtCl ₂ (Et ₃ P) ₂]	28.8	5.9	28.7	6.0	188-189	2
t-[PtBr ₂ (Et ₃ P) ₂]	24.7	5.0	24.4	5.1	136	2
c-[PtBr ₂ (Et ₃ P) ₂]	24.8	5.3	24.4	5.1	194	2
t-[PtI ₂ (Et ₃ P) ₂]	21.5	4.5	21.0	4.4	136	2
c-[PtI ₂ (Et ₃ P) ₂]	21.5	4.4	21.0	4.4	135 b	49
c-[PtCl ₂ (Et ₂ PhP) ₂]	39.8	5.0	40.1	5.0	203	50
c-[PtBr ₂ (Et ₂ PhP) ₂]	35.6	4.7	34.9	4.4	183	а
$t-[PtI_2(Et_2PhP)_2]$	30.7	4.0	30.7	3.8	139	a
c-[PtI ₂ (Et ₂ PhP) ₂]	30.6	3.8	30.7	3.8	139 ^b	а
c-[PtI ₂ ((EtO) ₃ P) ₂]	19.1	4.0	18.4	3.8	82	49
$[Pd_2Cl_4(Et_3P)_2]$	25.1	5.4	24.4	5.1	232	51
$[Pd_2Br_4(Et_3P)_2]$	18.3	4.6	18.8	3.9	214	5
$[Pd_2I_4(Et_3P)_2]$	15.6	3.3	15.1	3.1	193	5
$[Pt_2Cl_4(Et_3P)_2]$	18.9	3.8	18.8	3.9	223-224	52
$[Pt_2Br_4(Et_3P)_2]$	15.7	3.3	15.2	3.2	202	5
$[Pt_2I_4(Et_3P)_2]$	12.9	2.6	12.7	2.7	210	5
$[ZnCl_2(Et_3P)_2]$	38.3	8.0	38.7	8.1	96–97	53
$[ZnBr_2(Et_3P)_2]$	31.0	6.5	31.2	6.5	140-142	53
$[ZnI_2(Et_3P)_2]$	25.9	5.6	25.9	5.4	162–163	а
$[ZnBr_2(Et_2PhP)_2]$	42.7	5.1	43.1	5.4	66–68	а
$[Znl_2(Et_2PhP)_2]$	36.5	4.9	36.9	4.6	94-95	a

^aPrepared for the first time. ^b Isomerization to the *trans* complex occurs on heating, hence M. P. is for the *trans* complex.

Diiodobis(triethylphosphine)zinc(II)

The phosphine was added to 50% ethanol water solution of ZnI₂ from which a white powder was obtained. Recrystallisation from ethanol gave white prisms (73% yield).

Dibromobis(diethylphenylphosphine)zinc(II)

An identical preparation was used substituting $ZnBr_2$ for the iodide. White microcrystals were obtained from ethanol (74% yield).

Diiodobis(diethylphenylphosphine)zinc(II)

As above white crystals were obtained from ethanol (79% yield).

Spectral Measurements

The ultraviolet and visible spectra were recorded on Varian Techtron 635 and Shimadzu MPS 50L instruments, using ethanol or chloroform as solvents. The nuclear magnetic resonance spectra were recorded on a Varian T-60 spectrometer for ¹H NMR

using deuteriochloroform solutions and using TMS and CHCl₃ as internal standards, a Varian CFT-20 spectrometer for ¹³C NMR using deuteriochloroform solutions and TMS as standard and a Varian T-60 with a ³¹P probe and a JEOL C-60 HL spectrometer for ³¹P NMR. The *infrared* spectra in the region 4000–400 cm⁻¹ were recorded as nujol mulls on a Shimadzu IR 27G spectrometer, and in the region 400–40 cm⁻¹ on a RIIC FS720 interferometer, again using nujol mulls.

Carbon and Hydrogen Analyses

These were carried out at the Microanalytical Laboratory, University of Otago, Dunedin, New Zealand.

Acknowledgements

The authors acknowledge assistance, by way of grants for equipment from the New Zealand Universities Grants Committee. They record their thanks to Dr K. M. Mackay, University of Waikato, N.Z., for obtaining some of the ³¹P NMR spectra.

References

- 1 K. Shobatake and K. Nakamoto, J. Am. Chem. Soc., 92, 3332 (1970).
- 2 P. L. Goggin and R. J. Goodfellow, J. Chem. Soc. A, 1462 (1966).
- 3 D. M. Adams, J. Chatt, J. Gerratt and A. D. Westland, J. Chem. Soc. A, 734 (1969).
- 4 D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton and J. G. Smith, J. Chem. Soc. A, 545 (1970).
- 5 D. M. Adams and P. J. Chandler, J. Chem. Soc. A, 588 (1969).
- 6 R. J. H. Clark, G. Natile, U. Belluco, L. Cattalini and C. Filipin, J. Chem. Soc. A, 659 (1970).
- 7 J. E. Fergusson and C. T. Page, Aust. J. Chem., 29, 2159 (1976).
- 8 J. E. Fergusson and P. F. Heveldt, J. Inorg. Nucl. Chem., 39, 825 (1977).
- P. M. Boorman and A. J. Carty, *Inorg. Nucl. Chem. Lett.*, 4, 101 (1968).
- E. A. Allen and W. Wilkinson, J. Inorg. Nucl. Chem., 36, 1663 (1974).
- 11 J. Chatt and R. G. Wilkins, J. Chem. Soc., 273 (1952).
- 12 J. Chatt and R. G. Wilkins, J. Chem. Soc., 4300 (1952).
- 13 J. Bradbury, K. P. Forrest, R. H. Nuttall and D. W. A. Sharp, Spectrochim. Acta, 23A, 2701 (1967).
- 14 R. J. H. Clark and C. S. Williams, *Inorg. Chem.*, 4, 350 (1965).
- 15 R. J. H. Clark and C. S. Williams, Chem. Ind., 1317 (1964).
- 16 M. T. Rogers and P. T. Narasimham, J. Chem. Phys., 34, 1049 (1961).
- 17 E, N. Randall and D. Shaw, Mol. Phys., 10, 41 (1965).

- 18 J. T. Musher and E. J. Corey, *Tetrahedron*, 18, 791 (1962).
- 19 J. E. Fergusson and K. S. Loh, Aust. J. Chem., 26, 2615 (1973).
- 20 J. E. Fergusson and P. F. Heveldt, J. Inorg. Nucl. Chem., 38, 2231 (1976).
- 21 J. M. Jenkins, M. S. Lupin and B. L. Shaw, J. Chem. Soc. A, 1787 (1966).
- 22 R. E. Townsend and K. J. Coskran, *Inorg. Chem.*, 10, 1661 (1971).
- 23 B. E. Aires, J. E. Fergusson, D. T. Howarth and J. M. Miller, J. Chem. Soc. A, 1144 (1971).
- 24 J. M. Jenkins and B. L. Shaw, J. Chem. Soc. A, 1407 (1966).
- B. L. Shaw and A. C. Smithies, J. Chem. Soc. A, 2784 (1968).
- 26 F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy", Academic Press, London (1969).
- 27 D. A. Duddell, P. L. Goggin, R. J. Goodfellow, J. G. Evans, A. J. Rest and J. G. Smith, J. Chem. Soc. A, 2134 (1969).
- 28 N. F. Ramsey, Phys. Rev., 78, 699 (1950).
- 29 R. G. Miller, R. D. Stanffer, D. R. Fahey and D. R. Parnell, J. Am. Chem. Soc., 92, 1511 (1970).
- M. Black, R. H. B. Mais and P. C. Owston, Acta Cryst., B25, 1760 (1969).
- 31 R. G. Hayter and F. S. Humeic, *Inorg. Chem.*, 4, 1701 (1965).
- 32 R. G. Hayter and F. S. Humeic, J. Am. Chem. Soc., 84, 2004 (1962).
- 33 L. H. Pignolet and W. de W. Horrocks, J. Am. Chem. Soc., 92, 1885 (1970).
- 34 Y. A. Sakolova, L. O. Atovmyan and M. A. Porai-Koshits, Z. Strukt. Chim., 7, 855 (1960).
- N. C. Baenziger and R. J. Schultz, *Inorg. Chem.*, 10, 661 (1971).
- 36 G. G. Messmer, E. L. Amma and J. A. Ibers, *Inorg. Chem.*, 6, 725 (1967).
- 37 B. E. Mann, J. Chem. Soc. Perkin II, 30 (1972).
- 38 D. A. Redfield, J. H. Nelson and L. W. Cary, *Inorg. Nucl. Chem. Lett.*, 10, 727 (1974).
- 39 A. Pidcock, R. E. Richards and L. M. Venanzi, J. Chem. Soc. A, 1707 (1966).
- C. R. C. Coussmaker, M. Hely-Hutchenson, J. R. Mellar,
 L. E. Sutton and L. M. Venanzi, J. Chem. Soc., 2705 (1961).
- 41 G. Giacometti and A. Turco, J. Inorg. Nucl. Chem., 15, 242 (1960).
- 42 H. B. Gray and C. J. Ballhausen, J. Am. Chem. Soc., 85, 260 (1963).
- 43 K. A. Jensen, P. H. Nielsen and C. T. Pedersen, Acta Chem. Scand., 17, 1115 (1963).
- 44 J. Chatt and B. L. Shaw, J. Chem. Soc., 285 (1961).
- 45 K. A. Jensen, Z. Anorg. Allgem. Chem., 229, 265 (1936).
- 46 S. O. Grim and R. L. Keiter, *Inorg. Chim. Acta*, 4, 56 (1970).
- 47 C. H. S. Hitchcock and F. G. Mann, J. Chem. Soc., 2081 (1958).
- 48 J. Chatt and R. G. Wilkins, J. Chem. Soc., 2532 (1951).
- 49 Gmelin, "Platin", D. Teil (1957).
- 50 K. A. Jensen, Z. Anorg. Allgem. Chem., 229, 225 (1936).
- 51 F. G. Mann and D. Purdie, J. Chem. Soc., 873 (1936).
- 52 J. Chatt and L. M. Venanzi, J. Chem. Soc., 7533 (1965).
- 53 G. E. Coates and D. Ridley, J. Chem. Soc., 166 (1964).
 54 G. Brauer, "Handbuch der Präparativen Anorganischen Chemie", Vol. 2, 1346 (1962).